Glucose‐stimulated insulin secretion: A newer perspective
نویسندگان
چکیده
Existing concepts and models for glucose-stimulated insulin secretion (GSIS) are overviewed and a newer perspective has been formulated toward the physiological understanding of GSIS. A conventional model has been created on the basis of in vitro data on application of a square wave high glucose in the absence of any other stimulatory inputs. Glucose elicits rapid insulin release through an adenosine triphosphate-sensitive K(+) channel (KATP channel)-dependent mechanism, which is gradually augmented in a KATP channel-independent manner. Biphasic GSIS thus occurs. In the body, the β-cells are constantly exposed to stimulatory signals, such as glucagon-like peptide 1 (GLP-1), parasympathetic inputs, free fatty acid (FFA), amino acids and slightly suprathreshold levels of glucose, even at fasting. GLP-1 increases cellular cyclic adenosine monophosphate, parasympathetic stimulation activates protein kinase C, and FFA, amino acids and glucose generate metabolic amplification factors. Plasma glucose concentration gradually rises postprandially under such tonic stimulation. We hypothesize that these stimulatory inputs together make the β-cells responsive to glucose independently from its action on KATP channels. Robust GSIS in patients with a loss of function mutation of the sulfonylurea receptor, a subunit of KATP channels, is compatible with this hypothesis. Furthermore, pre-exposure of the islets to an activator of protein kinase A and/or C makes β-cells responsive to glucose in a KATP channel- and Ca(2+)-independent manner. We hypothesize that GSIS occurs in islet β-cells without glucose regulation of KATP channels in vivo, for which priming with cyclic adenosine monophosphate, protein kinase C and non-glucose nutrients are required. To understand the physiology of GSIS, comprehensive integration of accumulated knowledge is required.
منابع مشابه
بررسی اثر گلوکزآمین بر فعالیت آنزیمهای گلوکوکیناز و هگزوکیناز پانکراس و ارتباط آن با ترشح انسولین از جزایر لانگرهانس موشهای صحرایی سالم و دیابتی نوع 2
Background: Glucokinase serves as a glucose sensor in pancreatic β-cells and plays a key role in glucose homeostasis and glucose-stimulated insulin secretion (GSIS). In the present study we examined the effect of glucosamine, a glucokinase inhibitor, on the pancreatic glucokinase and hexokinase activities and on insulin secretion from freshly rat pancreatic islets of Langerhans. Insulin concen...
متن کاملThe role of noggin in regulation of high glucose-induced apoptosis and insulin secretion in INS-1 rat beta cells
Objective(s):The purpose of this study was to investigate the effects of Noggin on high glucose-induced apoptosis and insulin secretion in pancreatic beta cells. Materials and Methods: Different concentrations of glucose were used to examine their effects on INS-1 rat beta cells in vitro. When specific siRNA targeting Noggin and recombinant Noggin were added, apoptosis and insulin secretion wer...
متن کاملNormal Insulin Secretion from Immune-Protected Islets of Langerhans by PEGylation and Encapsulation in the Alginate-Chitosan-PEG
Background: Pancreatic islet transplantation is one of the most promising strategies for treating patients with type I diabetes mellitus.Objective: We aimed to assess the immunoisolation properties of the multilayer encapsulated islets using alginate-chitosan-PEG for immunoprotection and insulin secretion from the encapsulated islets induced under differe...
متن کاملTransient Receptor Potential Vanilloid 1 Activation Enhances Gut Glucagon-Like Peptide-1 Secretion and Improves Glucose Homeostasis
Type 2 diabetes mellitus (T2DM) is rapidly prevailing as a serious global health problem. Current treatments for T2DM may cause side effects, thus highlighting the need for newer and safer therapies. We tested the hypothesis that dietary capsaicin regulates glucose homeostasis through the activation of transient receptor potential vanilloid 1 (TRPV1)-mediated glucagon-like peptide-1 (GLP-1) sec...
متن کاملبررسی اثر عصاره آبی-الکلی گیاه کلپوره (Teucrium polium) بر ترشح انسولین از جزایر لانگرهانس جدا شده موش صحرایی
Background and Objective: Teucrium Polium (Labiatae) grows widespread in Iran and reduces blood sugar in-vivo. To examine the mechanism of this effect, in this study we explored the effects of aqueous-alcoholic extract of this plant on insulin secretion of isolated rat pancreatic islets. Materials and Methods: In this experimental study, the upper parts of the plant (stem, flowers and leaves) ...
متن کامل